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ABSTRACT

I.I.D. Representations for the Bivariate Product Limit Estimators

and the bootstrap versions.

by

Shaw-Hwa Lo Jane-Ling Wang
Department of Statistics and Division of Statistics

Rutgers University University of Calif. Davis

Let F(s,t) - P(X > s, Y > t) be the bivariate survival function which is

subject to random censoring. Let F(s,t) be the bivariate product limit

estimator (PL- estimator) by Campbell and Foldes (1982, Proceedings of the

International Colloquium on Non-parametric Statistical Inference, Budapest 1980,

North Holland). In this paper, it was shown that

F n(s,t) - F(s,t) = n E %i(s,t) + Rn(s,t), where { i(s,t)} is i.i.d. mean

i=l - 3/4
zero process and Rn (s,t) is of the order O((n log n) / ) a.s. uniformly on

-1/2 
n

compact sets. Tightness of the process {n E (st) is shown which
i=I

implies the weak convergence of the process to a two-dimensional-time Gaussian

Process whose covariance structure is given. Corresponding results are also derived

for the bootstrap estimators. The results can be extended to the multivariate

cases and are extensions of the univariate case of Lo & Singh (1985,
A

Tech. Report, Dept. of Statistics, Rutgers University). Since F (s,t) may not be
n

a survival function, it is modified to be one. The modified estimator is

closer to the true survival function than the bivariate PL-estimator in

supnorm.

-) . -, : . -..-- - .- . -...- -. . .- . -. . . --. :--. * 2--,.. .- :.. ..- -.



1. Introduction and Summary.

The one-dimensional product limit estimator (PL-estimator) by Kaplan &

Meier (1958) has been treated extensively; e.g. Breslow & Crowley (1974).

Csorgo & Horvath (1983), Gill (1983) and etc. Recently Lo & Singh (1985);

hereafter abbreviated as [L&S] (1985); represent the PL-process as mean of

i.i.d. processes with a remainder of the order 0((n -log n)3 /4 )(a.s.) uniformly

on a compact interval. The functional law of iterated logarithm (LIL) and the

weak convergence of the PL-estimator by Breslow & Crowley (1974) are all

direct applications of this i.i.d. representation.

The bivariate (or more generally, the multivariate) random censoring

model did not appear in the literature until near 1980.

0 0Let (Xi',Y i), i - l,...,n be the lifetime vectors of n pairs of items

which are i.i.d. with continuous survival function F(s,t) - P(X > s, Y > t).

0 0Let (Ci, Di) be the vector of censoring times of (Xi, Y1 ) and (Ci,Di) I = 1,...,n

are i.i.d. with survival function G(s,t) = P(C > s, D > t). In the bivariate

random censorship model, one observed (Xi, Yi' 6li' 621)' 1 1,...,n, where

0 0Xi_ min{X , Ci} , Yi= min{Y , Di,

6 or0accordingasX 0 C orX 0 > Ci and

61w 1 or 0 according asY 0 D orY D
=~~~ 00 ior0>D

62i 1 r0acriga i Yi i

It is assumed that (X , Y0) and (Ci, D) are mutually independent, for i 1,...,n.

1' ii i

Let H(s,t) - P(Xi> s, Y i> t) denote the survival function of (Xi, Yi). By

independence, H(s,t) - F(s,t) G(s,t). Based on the observations (Xi,Yi,611 ,62 1)

. . . . ..
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one would like to estimate F(s,t).

Situations where estimators of the bivariate survival functions are needed in

the presence of random censorship arise c-mmonly in medical follow up for paired

observations (eyes, kidneys, matched pair of treatment and control objects, and

(pre-test, post-test) situations), and in engineering for two-component system

of which the two components are dependent on each other. Another

potential application is the stochastic regression model where both the

independent and dependent variables are subject to random censoring. Campbell

(1981) developed a bivariate self-consistent estimator for discrete times of

deaths or losses. A self-consistent approach for the continuous case has

been suggested by Korwar & Dahiya (1982). Under the condition 'i= Di,

Munoz (1980a, 1980b) shows how to compute the two-dimensional generalization

of the PL-estimator through algorithms and proves it is the generalized

maximum likelihood estimator and its consistency. Hanley and Parnes (1983)

use the EM algorithm to treat maximum likelihood approaches to bivariate

estimations. Tsai, Leurgans and Crowley (1983) also construct a family of

nonparametric bivariate estimators from a decomposition of the bivariate

survival function and shows their consistency. Campbell & Foldes (1982); here-

after abbreviate as [C&FJ (1982); construct two path dependent bivariate

PL-type estimators of the true survival function F(s,t) and establish their

rates of strong uniform consistency on a compact set. Noted that the estimators

may not be survival functions (see section 6 of [C&F] (1982)). Later on

Campbell (1982) shows the weak convergence of these bivariate PL-estimators to a

I- r , : . . L . . .... . .
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Gaussian process. Horvath (1983) generalizes the results of [C&F] (1982) to the

multivariate case and obtains the rate of convergence on the Euclidean space
Rk.

It is the purpose of this paper to further investigate the path dependent

bivariate (multivariate) PL-estimator of [C&F](1982) (Horvath (1983)). For simplicity,

we shall focus on the bivariae case. The multivariate case can be dealt with similarly.

Two path-dependent PL-estimators are introduced in Section 2 of (C&F](1982). We

shall consider only one of them in this paper as the other can be treated with symmetric

argument. We shall estimate F(s,t) based on the fact that F(s,t) F(s,O)F(tls),

where F(tls) = P(Y0> tJX 0> s).

n
Let Nn(st) = N(s,t) = E I(Xi> s, Yi> t)

il

ai(s,t) = (Xi< s, Yi> t, 61i= 1), 1 1,2,...,n,

j(s,t) = (X > s, Y < t, 62j' 1), j =12..n

where I(') is the indicator function. To estimate F(s,o), project all points (Xi,Yi )

vertically onto the X-axis and ignore the Yi values. Let F (s,O) be the one-
i n

dimensional PL-estimator of F(s,O) based on (Xi, 6 11) , i - 1,...,n. That is

n N(X1 ,O) a (s,O)

i( N(XiO)+l )(n ifs X

F n(s,O) ,
0 otherwise,

'where X max {X 1.
(n) 14ign
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To estimate F(tls), project all points (X,, Yi) for which X > s horizontally to the

line X = s, and ignore the Xi values. Let F n(tis) be the one-dimensional PL-estimator

of F(tls) based on (Y' 6 2i), for which X > s. That is,

n N(s,Y ) 04(s,t)Tr ( N - j + if t 4 Y ( ) ).
SJ-1 'N(s,

Fn(tls) =

0 otherwise,

where Y (s) = max {Y X > si.
(n) 14i~n i

Our estimator of F(s,t) is Fn(s,t) = Fn(sO)Fn(ts), which is the product

of two one-dimensional PL-estimator. Note that F (s,t) may not be a survival
n

function as mentioned earlier.

Let (S,T) be any fixed point inIk 2 such that H(S,T) > 0. In this paper, we

1/2^
shall consider the behavior of the bivariate PL-process n (Fn(s,t) - F(s,t)) on

the compact rectangle [O,S] x [O,T]. The results of [L&S] (1985) are extended to

the umltivariate case. Since the i.i.d. representation of Fn (s,t) - F(s,t) in

section 3 originates from the corresponding univariate case in [L&SJ (1985),

the relevant results are summarized in Section 2.

In Theorem 3.1 the bivariate PL-process Fn(st) - F(s,t) is_I n

Il n -l1 3/
expressed as n E i(s,t) plus a remainder of the order O((n log n)

(a.s.) uniformly on [O,S] x [O,T], where ¢i(s,t) are i.i.d.

random variables. The mean and covariance of the process {1(s,t)} are given

in Proposition 3.1.

-1 n 1n/2

Let (s,t) - n ( is,t). Tightness of the process [n 2 ((s't)} is
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shown on compact sets (Corollary 4.1), and therefore implies the weak

convergence of the bivariate PL-process nl/2 (Fn (s,t) - F(s,t)) to a

two-dimensional-time Gaussian process. Noted that although the weak

convergence of the bivariate PL-process has been shown in Campbell (1982),

the covariance structure of the limiting Gaussian process is first given in

this paper in Proposition 3.1. The LIL on compact sets also follows directly

which generalizes the results of [C&F] [1982]. The proof of tightness in the

bivariate case is much harder than the univariate case in [L&S] (1985), and

utilizes the tightness results of Bickel & Wichura (1971). In Sections 3 and 4

similar results are also obtained for the bootstrap bivariate PL-process (defined

in Section 3), which provide a way to estimate the standard error of Fn (s,t)

or to give a confidence interval (band) for F (s,t).

Since the bivariate PL-estimator F (s,t) may not be a survival function,n

a modified estimator Fn (s,t) which is a survival function itself, is constructed

in Section 5. The modified estimator F (s,t) is shown in Theorem 5.1 to be closer

to the true life distribution than F (s,t).

All the results in Sections 3 to 5 are generalized to the multivariate

case in Section 6.

Some of the lengthly proofs are relegated in the appendices.

While this paper deals only with the multivariate random censoring model,

it is possible to extend the results to the multivariate competing risk models.

I,

.1
. . .. .
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2. Preliminaries

Since the i.i.d. representation of F (s,t) - F(s,t) in section 3 originates

from the corresponding univariate case in [L&S] (1985), for readers' convenience

we shall summarize the relevent results of the univariate case in this section.

Let us first define some notations for the univariate case. Let CX }

i = 1,...,n be i.i.d. with continuous survival function F(t) = P(X 0 > t), and

i

{C}, i = l,...,n be i.i.d. with survival function G(t) = P(C > t), where

*i i 00

one observes (Xi,6i), where X,= min(X i,Ci) and 6i = 1 or 0 according as

X0 C or X0 > C Let H(t) - P(X > t) and H (t) P(X > t and Y =1).
i i i i 1

For any positive reals x,t, and 6 taking values 0 or 1, define

O(x,6,t) = - [g(x t) + H(x) I(x < t and 6 = 1)], where g(y) = [H(s)] -2d H(s)

and x t means the minimum of x and t. Let F n(t) be the PL-estimator of F(t),

and A be any point such that F(A) > 0. For t < A, it can be checked without

difficulties that 4(x,6,t) is a uniform bounded random variable with mean zero and

Cov(O(X,6,s), (X,6,t)) = -g(sAt).

Next, we shall define the bootstrap sample of the PL-estimator F (t). As
n

mentioned in Efron (1981) we shall adopt the method of drawing random samples

(with replacement) (Xi, 6), i - 1,...,n, from the population ((Xi, 6k)9 1 =

giving each doublet equal chance (1/n) at each draw and constructing the PL-

estimator F (t) using the bootstrap sample (X , 6 ). The histogram of a large
nuerof valueson1/2 ^ * a

number of values for n (F n - F n) is used to approximate the distribution of

l/2 (Fn - F). Proposition 2.1 provides a first order consistent approximation and

hence shows the validity of the bootstrap method.

- - "* j* -.- , .* . *,. . . . . . .* -
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Proposition 2.1. If F is continuous, one has the following i.i.d

representations:

9 n
(a) log F n(t) - log F(t) n- r (X1,6 t) + Yn(t), where

i=1

Sup lYn(t)l O((n- log n) 3 /4 ) a.s.
O4t a

At 
n

(b) Fn (x) - F(x) = n F(t) Z O(Xi,6it) + Yn(t)

where Sup 0Yn(t) = O((n -log n) 3 /4 ) a.s.

(c) F n(x) - F(x) = n- IF(t) Z [O(Xi, 6it) - O(Xi,6i,t)] + y*(t)
ni=l

where Sup lY*(t)! O((n-1log n) 3 /4 ) a.s. (p), and p stands for

P in bootstrap probability.

Proof: (b) and (c) are Theorem 1 of [L&S] (1985), and (a) follows from the

proof of Theorem 1. 0

The i.i.d. representations in Proposition 2.1 ((a) and (b)) provide a way

to study the large sample properties of F n(t) and its hazard function

- log Fn(t). As a result, weak convergence and law of iterated logarithm

(LIL) follow immediately. Proposition (2.1)(c) shows the feasibility of

the bootstrap method for estimating the standard error of the PL-estimator

F and constructing confidence band for F(t).

n

I'!
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3. l.l.D. Representations.

In this section, the results of Proposition 2.1 are first extended in Lemma 3.1

to conditionnal survival functions and then in Theorem 3.1 to bivariate survival

functions. For the bivariate case, we shall consider the same bootstrap method as

in Section 2 of drawing random samples (with replacement)

*(X i, Y, 6 li) 621), 1i 1,... ,n from the population ~2 t(Xi) Yi 6 li' 6 2d;

i = 1,-.. n}, giving each element in Q equal chance (1/n) at each eraw. The

bivariate PL-estimator F n(s,t) is then constructed as F n(s,t) but using the

*bootstrap sample i(X1 , Yi 6 i 6
21i)li-l,...,n instead; thus F n (st) = F n(sO) F n(tfs)*

We shall adopt the notations of Section 1 for the blvariate censor model,

and define H(tls) =P(Y > tjX > s), H l(tfs) -P(Y > t, 62= 1! X > s),

() P(X > S6.6 tkn vle
H lx (s 61 1). For positive reals x,y,s,t, and l1'2taigvle

0 or 1, let

E(X,61,s) = I(xA s) + [H(x,O)]J I (x~s and 61= 1)], where g(x) = fx[H(s,0)]I 2 dif (s),

and

S(y,6 02 t -[jg(yAt0 + [H(yls)]- 11I(y~t, 62 1)], where g (u) =fu[H(yls)] -2 H(I)

Let (S,T) be any point with H(S,T) > 0.

n n

Lemma 3.1. The following is true if F(s,t) is continuous.

------------------------
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-I ~ln
(a) log F n(ts) - log F(tjs) " m s E (Y1 6 21 t)I(Xi> s)

i-iwhrSup ~ i= 1 -l 3/

+ R (t~s), where Sup R O((n- log n) 3/) a.s.

n

(b) log Fn(ts) - log Fn(tIs) - M* [& (Yi, 62 ,t)I(Xi > s) -
i-i

4s(Yi, 6 2 1,t)I(X >s) ] + R*(tls), where

* -l,3/4ere

Sup IRn(tIs)l - O((n- log n) 3 /4 ) a.s. (P*), where P*
04s4S, O~tfAT

stands for the bootstrap probability.

Proof: The proof is similar to that of Theorem 1 of [L&S](1985) and is given in

Appendix1. 0

]-lsy *

Let n(x,y,61 ,62 ,s,t) - (x,61 ,s) + [H(s,O) ,62,t)I(x > s). Define H (tls),

Hl(tls), H*x(s) similarly by using the bootstrap sample (X ,Y ,61, 62) instead.

Theorem 3.1 If F(s,t) and G(s,O) are continuous, we have

(a) log F (s,t) - log F(st) = n E (XiY, 6
1i,

6
2 ,s,t) + Rn(st) where

i-l

Sup IRn(s,t)l - O((n-llog n)3 / 4 ) a.s.

~n

(b) Fn(S,t) - F(s,t) n-1 F(s,t) E n(XiYip 61 6 s,t) + Rn(s,t) where
n i-l 3/4

Sup IR (s,t) = O((n-l log n) 3 /4 ) a.s.
Os(S, Ot<T

*°. - . _ -... * . . . . . . . .

'- - ." ' -. i. .... *-- * .- .. -- '-..*. .- . .-,-"--- -" "-' -. .
-
-- --. ''i'.""'.'. .'""". _'' ' .' "" "-".]
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cn

(c) F n(St) - F n(s,t) 
= n F(s,t) E [n(Xt' Yi' 611' 621' s,t)

- Y(X1 ,'t, 61,, 621 st)] + R*(s,t) where

Sup IRn(st)I - 0((n-llog n)3/4) a.s. (p).
O<s4S, 0teT

Proof of (a):

Proposition 2.1(a) and Lemma 3.1 imply that

log Fn (St) - log F(s,t) - [log Fn(sO) - log F(sO)] + [log Fn(tls) - log F(tls)]

-1 n  ( A1's + 6-1 n
n Z ,s(Yl, 6 21 't)I(X 1> s) + Rn (s,t), where

i-i i-
-ll 3/4

Sup IRnl(s,t)l - 0((n- log n) 3/4 ) a.s.
O(s(S, O(t(T

_in
-n Z n(Xi, Y i 611' 62 1 *slt) + Rnl(s't) + Rn2(S't)l where

i-l

Rn2 (st) - {n/m - (1I(s,0)] n E s(Yi, 621 ,t)I(X i > s).

It is easy to see at this stage that, Rn2(s,t) -O(n-llog log n) a.s. for each (s,t).

To show that it holds uniformly for 0s4S, 04t<T, we shall apply the functional

LIL due to Dudley & Philipp (1983 Theorem 4.1).

Let ZI  Es(Yi, 621,t)I(Xi > s), ZI takes values in D[O,S] x D(O,T] under the

n 2
sup norm I I on (0,S] x [0,T], and Sn- Z It is clear that EIZ I < and

j-l

.%



j AI

hence Condition (4.2) of Dudley & Philipp is satisfied.

Condition (4.1) is satisfied due to the tightness of the process n S/2 whichn

is shown in Theorem 4.1 of the next section. It then follows from Theorem 4.1

of Dudley & Philipp (1983) that ISn/nl - 0((n-1log log n) / 2) a.s.

Also Sup In/ms - [H(s,O)]-li - 0 ((n-llog log n) 1/2) a.s. from the LIL for empirical

04s(S

distribution and the fact that H(SO) > 0.

We have thus shown that

Sup IRn2 (St)I - O(n-log log n) a.s.
O~s S, O~t4T

(a) follows with Rn(x,t) - Rn (s,t) + R n2(s,t).

Proof of (b) : Let Zia n(Xi. Yt. 61t' 621' st).

It can be checked easily that ZI is uniformly bounded on [0,S) x [0,T). Applying

Theorem 4.1 of Dudley & Philipp (1983) once more, we have
n

Sup in- £ n(Xi, Yi1 611,621' st)l O((n- log log n) )/2  a.s.
0sS, 0t4T i-1

(b) then follows from (a) and the two-term Taylor's expansion of

Fn(s,t) - F(s,t) - exp[log Fn (s,t)] - expjlog F(s,t)].

Proof of (c): Using Proposition 2.1(c) and Lemma 3.1(b) the proof follows by

mimicing the proof of (a) and (b).

The following LIL follows from the proof of Theorem 3.1 by applying

Theorem 4.1 of Dudley & Philipp (1983).

a
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Corollary 3.1 If H(s,t) is continuous, we have

(a) Sup F n(s,t) - F(s,t)l - O((n-llog log n) 1/2) a.s.
O4s4S, O<t4T

(b) Sup IFn(S(t) - Fn(S,0 O((n-1 log log n)1/ 2) a.s.
SO.se.S, Oetr.Tnn

Noted that Corollary 3.1 (a) was also obtained in [C&F] (1982) but (b) has

never been shown to the best of our knowledge.

Let n(s,t) - n(X,Y, 61, 62,s,t) and r((s,t), (s,,t,)) - Cov(n(s,t), n(s,,t,)).

The mean and covariance structure of the process {n(s,t)} is given in the next

proposition.

Proposition 3.1 (a) E(n(s,t)) - 0

(b) Assume s < s',

- r((s,t), (s,,t))

9 -g(s) + [H(s,O)]I E[&s(Y, 62 ,t)&(X, 61,s')1I(X > s)]
s 2

4 + [H(s,0)] l{fyH(yIs)[H(ys)] -2g s.(y t')dHl(YIs)

- Jt[H(yls)]-I gs.(y t')dHl(yis') f t' (H(yls) H(yls')]-ldHl(YlS')}.

4,

"-
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Proof of (a):

-ECFE(X, 61, s)) + fH(s,O)]'-1EYIX>s[E(Y, 62, t)]OP(X > s)

0, since both expectations above are zero by EL&SI(1985).

Proof of (b): Due to the conditional argument in & (Y,652 t), the covariance

structure of the bivariate case is much more complicated than the univariate case

and is calculated in Appendix 11. 0

4 When s - s', the covariance structure in (b) is much simpler, and we have:

Corollary 3.2. (a) r(s,t), (s,t,)) -- g(s) -g5 (tAt')

(b) Var(n(s,t)) -[-g(s) +g (1

Proof: It can be checked easily from the proof in Appendix 11 that the

*second term of r(s,t), (s',t')) vanishes when s s'. The rest of the proof

follows immediately.0
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4. Weak Convergence.

-1n
Let ni (s,t) n(Xip Yi 611p 62i' s,t), 7(s,t) n- n (st),

;i(s,t) - F(s,t)ri (s,t), Z(s,t) - F(s,t)-(s,t) and ni (s,t), n (s,t), Ci(s,t), C (s,t)

be their bootstrap counterparts. We shall prove the tightness of the processes

1/2- 1/2-n nl(s,t), n (s,t) and their bootstrap counterparts. Weak convergence of the

corresponding processes to Gaussian Processes then follow from the Cramer-Wold device.

For any block E - (s,s'] x (t,t'] define

X(E) n(s',t') - n(s,t') - n(s',t) + n(s,t)

Xi(E) = ni(s',t') - ni(s,t") - ni(s',t) + ni(s,t).

Xn (E) n l/2 [T(s',t') - (s,t') - i(s',t) + T(s,t)] n- 1 /2 E X(E)
i-l

Lemma 4.1. There exists a positive finite measure W oni1 +x + such that

E(IX(E)l 2 ) ( W(E), for any block E in [O,S] x 1O,TI.

Proof: The proof is given in Appendix III.

Let B - (sips2] x (t lt 2 ], C = (s2,s31 x (tlt 2 I by any two neighboring

blocks in [O,S] x (O,T].

Lemma 4.2. E(JXn(B) 2 xn(C)l2) 4 2W(B)W(C) + 0(n-), where O(n- ) is independent

of B and C.

Proof: E(IXn(B) 2 IXn(C)1
2 1

a n-2E[(EX (B))2 (EXi(C)) 2]
n 2n 2

n- 2E( [E X2 (B) + E X (B)X2(B)][E X2(C) + E X (C)X (0)

im -i1 isj
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n - 2 {(x 2 (B) X2 (C)) + n(n-1) E(X2 (B))-E(X2 (C)) +

n(n-l) [E(X(B)X(C) 2 ]2 }

4 2E(X 2 (B))'E(X2 (C)) + 0(n-l), where 0(n - I ) is independent of B and C

since X(E) is uniformly bounded for any block E,

< 2W(B).W(C) + O(n-). Q

We shall use the convergence criteria for multiparameter stochastic processes

by Bickel & Wichura (1971); hereafter abbreviated as [B&W] (1971) to prove

the following tightness theorem.

Theorem 4.1. If G(s,0) and F(s,t) are both continuous, then the processes
1 n/2- (  1 n/2 ._*

{n 12(s,t)} and {n 1/f (s,t) - i(s,t)]} are both tight on [O,S] x [O,T].

Proof: From Appendix III, W(x,y) - constant .H(x,O)Hl(O,y) + constant .Hl(X,y),

where Hl(X,y) - P(X>s, Y>t, 62- 1). The measure W has continuous marginal since

F(s,t) and H(s,O) are both continuous under our assumptions. We shall apply

Theorem 3 of [B&W](1971).

Replace W(E) by Wn(E) , where Wn(E) - 21/2W(E) + O(n - 1 / 2 ) and O(n- /2 ) is

independent of the block E in [0,S] x [0,T]. Hence (Xn, Wn)E C (2,4), where

C (B,v) is defined on page 1658 of [B&W](1971).

Theorem 3 and the discussion after it then implies that X (s,t) - nl/ 2 (s,t)is tight.

* Noted that although X (s,t) does not vanish along the lower boundary ofn

[0,S) x [0,T], it can be modified by subtracting the boundary value of

SXn (s,t) from it.
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To show the tightness of nl/ 2(n(s,t) - T(s,t)), recall that Theorem

3.1(c) implies that bootstrapping Fn (s,t) amounts to drawing random sample

{n*(s,t), i - 1,...,n} from the population which assigns equal mass (1/n)

to each of the n functions (ni (s,t), i - 1,...,n}. For any block E let

X (E), Xn(E) be defined as in X(E), Xn(E) by replacing n by n - n. Following
nn

- the proof of Lemma 4.1 one can show that E(IX*(E) 12 )4 W(E) + O((n- log n) 
/2 )

where O((n - I log n) 1/2 ) is independent of the block E. Lemma 4.2 then implies

that E(IXn(B)l 2 IXn(C)1 2 ) ' 2W(B)W(C) + O((n-llog n) I /2) a.s. The rest of the

1/2-proof is similar to that of n n(s,t).

The following corollary is immediate.

Corollary 4.1. Under the assumption that G(s,O) and F(s,t) are continuous,

the process {n l/ 2 (s,t)} and Cnl/2 ((s,t) - Z(s,t)) are both tight on [O,S] x [0,T].

Theorem 4.1 and its Corollary also show that both the bivariate hazard process

and PL-process converge weakly to a two parameter mean zero Gaussian process with

covariance r((s,t), (s',t')) and F(s,t)F(s'.t')r((s,t),(s',t'))respectively.

* 1/2 ~*1/2To show that n (F n - Fn) converges to the same Gaussian process n (Fn- F),

1 1/2 -*
we only have to show that the finite dimensional distribution n [R (sit ) - (st),

for some {(sil,ti), lik}, converge to the k-variate Guassian distribution with

mean zero and dispersion matrix {F(Slsti)F(Sjstj)r((si,t ),(Sjst ))}. This follows

directly from the bootstrap central limit theorem for sample means (Bickel and

Freedman (1981) or Singh (1981)). Thus we have proved the following corollary.

C. * **.**. *b *.-.*.--,:. *..-.*.*%** *. ..

U.* •* ~ .~ .U . - i.
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Corollary 4.2. Under the assumption that G(s,O) and F(s,t) are continuous.

1/2 ^1/2 ^
n (Fn (s,t) - F(s,t)) and n (F n(s,t) - Fn (s,t)) both converge to the two-

parameter Gaussian process with mean zero and covariance F(s,t)F(s',t')r((s,t),(s',t')).

We have thus shown that the bootstrap method works under the bivariate random

censorship model, which provides a way to estimate the standard error of F n(st)

or to construct a confidence interval (band) for F(s,t). This is most valuable

since the covariance structure of Fn (s,t) is very complicated as shown

in Proposition 3.1.

5. Modified estimators.

The bivariate PL-estimator F n(s,t) defined in section 1 may not be a survival

function. Examples are given in [C&F] (1982) and Campbell (1981). What happen is

that although Fn(st) is a non-increasing function of t when s is kept fixed, it

may not be nonincreasing function of s when t is kept fixed. We shall modify

F (s,t) to be a survival function and this modified estimator is closer to the truen

survival function F(s,t) then Fn(st) in Supnorm distance.

For any Os<-, O~t<-, define F (s,t) - Sup Fn (st). Note that Fn (s,t) is a step

function and Fn(s,t) = Fn(s,Y) = Sup Fn(XkYi), for yit<Yi+l.XkS

Proposition 5.1. Fn (s,t) is a survival function.

Proof: For s',s, it is clear that Fn(s,t) ) Fn(sOt).

For t'>t, Fn(s,t) - Sup Fn(s',t) ) Sup Fn (s,t') - Fn(S',t'). 

For each s, let xs be the xj such that Fn(st) Fn (xt) = Sup Fn(Xk~t).
xk~os

161



Since F n(s,t) 4 F n(s,t) and F(s,t) )F(x , t), we obtain the following:

F n (s~t) - F(s,t) n F(stt) - F(s,t) 4 F n (xs t) - F(x ,~t).

It then follows immediately that

Proposition 5.2. Sup ifn (s,t) - F(s't)I < Sup IF (s,t) - F(S't)I.
O-Cs t<0(s,t<in

Proposition 5.2 implies that, for any A n=o(n 1/2

X~ SupIf (s,t) - F (s,t1) + 0 a.s. (5.1)
s't

*It is not clear yet whether A can be taken at the rate of n1/2* We

conjecture that (5.1) hold for A / under some strict uniform uionotonicity

of F(st), and hence n 1/F0n (s~t)-F(s~t)) converges weakly to the same

-Gaussian process as n 1/2n6(5st) - F(s~t)) does.

* 6. Generalizations to multivariate survival function.

*For ultivariate survival function F(sls 2 0-9,s k), we can define the

multivariate Pt-estimator by conditioning argument similar to that of

F n (s,t). See Horvath (1983) page 203 for such extension. Let F n(s l'"' k)

denote the multivariate Pt-estimator so defined. All the results in this

*paper can be generalized to Fn(51)**15k with similar arguments.

4t
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7. Appendix 1: Proof of Lemma 3.1.

Define the following empirical survival functions:

-1 nH n(s,t) - n z I(X i> s, Y i> t), hence ms nH n(s,Q),
n i-i

Hn~t s) i E I(X i> S, Y i> t), H ln(t~s) =m~ sz I(X > S, Y> t,21 1).

Let R 1 ( tis) - log F (tls) - ftIH (y~s)]- dH n(Y~s),

R (t~s) -ff(H (y~s)1j - [H(yIs)]- 1- H(ys -

Rn Ct!s) -ft{(H (yjs) 1 - [H(yls)] l) d(H (yls) - H (yls)).

* [Part 11

Proof of Lemma 3.1(a):

Hl(tls) - P(Y > t, 62- l1X > s)

= P(Y 0> t, Y 0 4 DI X 0> S, C > s)

= - J G(yls)dF(yls), where G(tjs) -P(D> t C > s).

*Hence dH,(tls) G(tls)-dF(tls).

As a result log F1(tls) - I(F(y~s)I I dF(yjs)

-ft (H(yis)1 1dH (yIs).

It can be checked easily as in the proof of Theorem 1 of [L&SI (1985) that



n-1Zn(Xi, Y1, 6 116 21 S't) -ft[H(yls)] -2 [H(yjs) H H(yls)IdH f(yls)

+ ft[H(yls)]- d(H (yts) - H (y~s)).

Hence log F n(tis) -log F(tls) - R ni C ts) + n Zn(Xiv Yi 61li 6 2i' S't)

+ Rn2 (t~s) + Rn3 (tjs).

From (8) of [L&S] (1985), for any O4s4S, Sup IR (tlS)I O(m- ) a.s.

Since m15> m1 for any Q4s, S, and m1 = 0(n) a.s., we have

Sup IR (tjs)j = O(n- ) a.s.
0(s4S, 0tTn

Next, consider R 2(tls).

IR (tfs)I - Iff[H(yjs) - H ys)2 [ YSH2(l)-lH(I

4 Sup IH(yis) - H n(YIS)l 2 . inf [H n(yjs).H 2 (yfs) (7.1)

04yT 04yI-T

By triangular inequality,

*Sup IH(y~s) - H n(yIs)j 4 Sup [H(s.,0)]- [IH(s,y) -H n(s,y)j + IH n(s,0) - (s,Q)I]
0(rs(S, 04'~S

* 0y4T 04-y4T

-0((n- log log n) 12) a.s., from the

law of iterated logarithm for empirical distribution functions

* (See Kiefer (1961)).

Since bath H(yls) and Hn(yls) are bounded away from zero (a.s.) (7.1)

*implies that Sup IRn2 (tls)l 0(n 1log log n) a.s.
O~s~s O4t4T



It only remains to prove

Sup IRn3 (tjs)I 0 ((n- log n) 3/ a.s., (7.2)

and this can be done by similar argument of Lemma 2 of [L&S](1985). We shall

provide the proof when G is also assumed to be continuous (and hence H is continuous).

The argument can be extended to the case when G is arbitrary as the

* remark after Lemma 2 of [L&SI(1985).

* Let kn - OC(n/log n)l1/ 2),y T. Partition the interval [0,T] into
n yl-0' Ykn+l-

sbitvls[ ,y+] i - 1.k n such that H11,0' - H '0',+, = 0((n- ogn 1/2

and hence both H(s,yi) - H(s~yi+1 ) and Ii(y~Is) - H(y i+i Is) are 0((n-1 log n)1/2 )

uniformly in s. From now on, all the 0(-) terms hold uniformly for 0(s<S, 0Ct<T-.

IR n3(tis)I

k
n 1ri+l [ r(Ils]-i [y ]-1I [H Cy Is)]- -+ [H.iil]1 d( Y ) - H WySW)

* JMO y1  Ln\YOJ L\I n . ~ Y ' Id( 1 Is 1

k

+ E n ifYi+l {[H (yis)] -I - [H(yjIs)]- 1l) d(H1 (y~s) - H (yls))I,
i-l i yin

4 2 maxSu I[ n~ ~ s ] - -[H(yl s ] I [ ~i1s)] 1I [H( fis)] 1  1

* ~ ~ u '[ 2ts~ ma1uW[,y~)'-- [nY~) l

nn

4 (A +B (say)



To evaluate A, partition [yii ] into subintervals [Y,,, Yi~i+~l~

j 1..a where a = O((n/log n)1/4), y yi = uhtanl g i ''i (a +1) Yi.+1'schta

*H(O,y i. - (O,yi(j+l)) =O((n- 1log n) 3/4) and hence both H(s,yi.) -H(s~y,(+)

and H(y i.is) - H(y i(.+l) Is) are O((n- log n) 3/4

Consider

Sup I[H n(yls)]f1- [H(yjs)] 1 - [H n(y1 Is)]- 1 + [H(yis)]'I1

'max J[H (y s) .[H (y s)) 1- [H(y Is)]'1 + [H(y Is)]- 1
l~j~a n ij ni

n

+O((n -1log n) 34), by monotonicity of H n(YlS)*

-max IIH n(Yij Is) - H(yis)][H(yijls)1f2 _ [H (yils) - H(yiis)](H(yils)1-2 1

+- 0((n -1log log n) + Q((n- log n)4) a-s., by LIL for empirical distribution

* function and strong law of large number.

(max [H(S,T))- [ H i s) - H(y iis)]H 2 (i)-H(ys H~is] 2(yi

+ 0((n- log n) 3/ a.s.

max [H(S,T)]- 4 H (y is) - H(y~js) -Hn(is + H~~sl+ -1~~, H(s,y. )I
l~j~a n ij J(is 11n

jH n(yi Is) -H(y 1Is)II + 0((n 1log n)3 ) a.s.
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max [H(S,T)-4 (jHn(s~yij) - Hn(s,yi) - H(sYij) + H(s,yi)I/H(s,O)) + O(n- log n)

+ Q((n-llog n)3 / 4) a.s., by LIL for empirical distribution function. Use the

exponential inequality of Lemma 1 in [L&SI(1985) to get the following probability

bound as in Lemma 2 of [L&S](1985):

max max P(IHn(Ssyij) H(s,y) H(s,y 1 j)+ H(s,y)) > constant ln-3/41og n3 /4

04i4k l4j4a
n n

0(n- 3). It then follows from Bonferroni inequality and the Borel Cantelli

Lemma that A = 0 ((n log n) / ) a.s.

To estimate B, notice that IHi(SYi+l) - Hl(sYl), 4 JH(syi+l) - H(s,yi)I.

The rest of the proof is similar to that of A and in fact easier, since one need

not to partition the interval fyi, Yi+ 1] further as in B. We thus have

B . 0((n-llog n)3 /4 ) a.s.

(7.2) now follows immediately.

[Part 2]

Proof of Lemma 3.1(b):

Define Hn* (s,t), and as t), H(ts), Hn(tls) by

using the bootstrap sample instead. For example,

4n * * -1*

Hl(ts) - [msI z I(Xi > s, Yi > t, 62 1). By the same argument as the proof ofi-i

Lemma 3.1(a) above and Theorem 1 in [L&S] (1985), we have the following bootstrap
a * -l* -

version Sup Ilog Fn (tls) - ft[H(yls)]- dHn(ys)j O(n- ) a.s. (p).
04s(S, 0(t4T

. Since S Rnl(s,t)h = 0(n- ) a.s., we arrive at the following:
04s4S, 04t4T

J,



log i*(tls) - log F (tls) -ft{[H*(yls)]F
1 - [H (Yls)1-'}dH* (yIS)

+ ft[H (y~s) 1 d(H* (y~s) H H1 (y~s)) + 0(n'l) a.s. (p*)

I + 1I + 0(n ) a.s. (p ),where 0(n 1) holds uniformly on I0,S]x[0,T].

Mimicing the proof of (a) for ROW(tS), we have

I f'[IH*(yis)] 1 - [H (yls)1 1)dH n(y~s) + 0((nJllog 03/4~) a.s. (p)

.t[EH (y~s) - H*(yls)] [H (YIS)f'2dH n(Yls) + 0(nlI log n)

+ 0((n 1l log n)3 /4 ) a.s. (p*)

Jt[Hn(y~s) -H*(yls)][H(yls)I- dH1 (y~s) + 0((n llog n) 34) a.s. (p ) (7.3)

The last two equalities follow by similar argument as Rn2(tls) in Lemma 3.1(a).

Mimicing the proof of Lemma 3.1(a) for Rn3(t~s) once more, we have

H - fHyl]-dH ys-H ys)+ 0((nJllog n)3/) a.s. (p* (74

*Lemma 3.1.(b) now follows from (7.3) and (7.4) since all the 0(-) terms

hold uniformly on [0,SJx[0,TI. 13
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8. Appendix 11: Proof of Proposition 3.1(b)

Cov(n(s,t), r(s',t'))

- E(ri(s,t)r1(s',t')). from proposition 3.1(a)

- E([,,(X,61 ,s) + [H(s,O)J- 1  5(Y, 62,t)I(X > s)].OMX,61 ,s') +

[H(s',O)] CS (Y, 621l)( > S']

- E[C(X,6 s)*M(X61s')] + [H(s,O)J - E[~ C(Y,6 2 t)I(X > ) X6'

+ [H(s',O)1'Ec(X, 61,s)y(Y, 62 ,t')I(X > s')] + [H(9,)H(s,O)]
1l

*E[C s(Y,6 2't)4s'(Y,62't')I(X > S' V s)]

-I+ II + III + IV, wherea e s - max{s, si.

It follows from direct calculation or [L&S] (1985) that I -- g(sA s) --g(s),

*fora4s's.

* Next we shall show that III vanishes for s < s'.

To see this, consider

E[CXIt).;,(,62P ')(X> so))

E(g(XA s) + (H(X,O)1J I(X 4 a, 6~ l))[g 5 (YA t') + [H(yls')] I~y 4t"6 2 0 )

*I(X > a'))

- {EYIXD 4g(s)gs-(YA t' )] + Ey 6 2X>s .4(s)[H(Yls')] -1~ ' 62 ))-~'O

- Qt~ H(yls')dg5.(y) - ft' [H~ys')] 1ldH (yls')}g(s)H(s',O)

- 0, since dg s (y) - [H(yls)1-2dH1(y~s').



Hence III - 0, for s 4 s'.

Since 11 can not be simplied, we shall leave it as it is. Noted that if

s)s, by symmetric argument, 11 0.

It remains to evaluate IV.

IV -(H(s,0)H(s',0)] E(C s(Y,6 62 t)4 s(Y, 29 t')I(X > s'Vs)J

jH(s,O)H(s',O)]-IHs,)EYxs{g (YAt) + [yl]-l yt 621]

[HoYt)+( (s')E U , [6yl) 2(~t a621)

-H(s,0)](Ej>I(Ytg.(t) + E-YiX>so4gr(YAt)(H(YsF1Y'6=)

+ EyiX>s.dg5s.(YAt')fH(Yjs)1 11(y~t, 6 2' 1)] + EyjX>s54[H(Yjs)H(Y~sO)j1 I(Y~tlht,6 2 '1))

- (H(s,0)1J (Iva + rb + Ic+ IVdI.

By integration by parts,

IVa - ItH(yls') g -(YA t')[H(yls)) 2 dH (yls) + ft'H(yjs')eg (Y At)[H(yjs')]1 -2(ls)

- al W E 2

It is easy to show that,

IV b - - f~tg 6 (YAt)(H(yjs')j dH 1(Y180) IV - a12

IVc - - It (At)Hys]- H(s)

IVd - - It t [H~yjs)H(yjs')]- dH1 ys)

Hence IV a H(s,0)]- [IV al + IVc + Idl. for s 4 s'.

The proof is now completed.Q
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9. Appendix III: Proof of Lemma 4.1.

Since fl(s,t) is uniformly bounded random variables for (s,t) in [O,SIx[O,T),

let M be this uniform upper bound.

Let c - H(S,T) > 0.

E((X(E)1 2) 4M EfX(E)j

-4M Elri(s~t) - n(s,t') - n(s,rt) + s,,)

-4M EIIH(s,O)] 1I(X's)[I (Y,6 t 0 - (Y 6(1t)-[~'OJ1IXs)

(~(Y, 62,t) - ~(Y,6,t-)]I

< 4M EI(H(s.O)I 11(X~s)(g s(YAt) - gs (YAt-)] - [H(s-,0)) 1 I(X>s-)Ig s(YA t)

.7

- g5.(YA t')]i + 4M Ej[H(s,O)] I(X>s)I(t4Yt',6 an 1)IH(Yis)]-

- (H(s,0)I'lI(Xs)I(t4YtOO62- l)*(H(Yfs')j1 I

-4M1 (I + 11), wihere 1, 11 stands for the first &second expectation

respect ively. (9.1)

Let H (s,t) H (tls).N(s.0) -P(X > s, Y > t, 62 1). Let's consider I first.

I -EJI(xOs).f~t. JH(sty)1- 2 d (8,Y) - I(X>s)Jf" tH Ay12dls,)

+ EII(s(X y)JA t [H(s,y)J' dH,(s,y)I

r-EIJf~ft([H(s,) 2 [H(s' )])dH,(sy) + El~ t [H(s',y)F d(Hl(s,y) -Hl(s'y)

Y^ t Y t y)



-1 7-74., - 7w .i

+. EjI(s(X4-s') jy"t [H(s,y)]-2 dH (s,y)I

- a + Ib+ I (9.2)

1 4 E-4 lf Y t,(1(s,y) - H(s',y)] dH (s.y~i
'a '2 EJYA t 1

r. 2E-4 [H(s,O) - H(s',O)].EIH 1(s,Y At) - H 1 (, YAt-)j

4 2E-4 [H(s,O) - H(s',O)1.E[H I(O,YAt) - H1(O, YAt-2I

(2E- 4 [H(s,O) - H(s',O)] (Hi (O,t) - H 1(O~t')] (9.3)

cb4 -2 EJH I(sY/t) - H I(s',YAt) - H 1 (s,Y At') + H (s', YA t')

'c £-2 E1(S(X(s')* [H (s,YAt) - Hl(s,YAt')fl

4 C-2 E1(s(X~s') (H (O,YA t) - H 1(O,y At') I

C c2 H(s,O) - H(s',O)IH 1(O,t) - H 1O,t')](95

Next, consider II

I- EjI(t4Y~tO, 6 2 1)[I(X>s)[H(s,Y)- 1- I(X>s')[1I(s',Y)]- 1

4C-2EjI(t4Y~tv 62' l).[H(s',Y) -H(S,Y))l 4+ C-2E11(t(Y~t, 2 1)I(s(X~s,)j
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46E [H(sQ) -H(s',O)]-H (O,t) - H (O,t')] + C- [H (s,t) H H(s't') - H1(S~t)

+ H1 st](9.6)

For any x, y

let W(x,y) -W(,)~,)

-4 -2 -2
- 4M (2e + 2e ]H(x,O)H (0,Y) + 8ME H (x,y).

* It now follows from (9.1) to (9.6) that,

E([X(E)] 2) W(E).0

Noted that we have used the same notation W for both the measure and the survival

* function.
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